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in the present paper, we find necessary and sufficient stability condi-
tions for a simple one-time step finite difference discretization of an
N-dimensional advection—diffusion equation. Furthermore, it is shown
that when the implicit factors differ in each direction, a strange behavior
occurs: By increasing one implicit factor in only one direction, a stable
scheme can become unstable. It is thus suggested to use a single
implicit direction (for efficient computing), or the same implicit factor
in each direction.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In a recent paper [ 1], we found stability conditions for a
discrete 3D advection—diffusion equation. We showed that a
3D scheme may need a fully implicit treatment in one
direction if a 2D stability limit is attained in the remaining
directions. In the present paper, we will generalize the study
to an N-dimensional problem and find necessary and
sometimes sufficient stability conditions.

Consider the advection-diffusion equation for a state-
variable y(1, x,),

dy d L
oL e, L R M)

where ¢ is time, x; are the space directions, u, are the velocity
components in the corresponding direction, and &; are the
diffusion coeflicients.

If we apply a finite volume method with volumes of con-
stant size on a system with constant velocities and diffusion
coeflicients, the discretization of Eq. {1) can be achieved by
a centered scheme in space and an implicit Euler treatment
in time. For this purpose, implicit factors «; for advection
and §, for diffusion are introduced in such a way that the
scheme reads'’
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where n; defines the n;th peint in direction x, such that
x,=n; Ax;.

This scheme reduces to the classical FTCS (forward in
time, centered in space} scheme for x,=0 and f,=0,
whereas for «,=3 and f,=) one retricves the
Crank—Nicolson method. The scheme is thus a generaliza-
tion of well-established techniques. In the present paper, we
focus on centered space derivatives, which gives a poten-
tially very dispersive scheme, but the stability conditions
that will be established remain valid for uncentered schemes
that use upwind techniques and are thus less dispersive.
Indeed, as it has been shown in [17], to generalize the
stability conditions to these uncentered schemes it is
sufficient to replace 8.7, by 8,8, + a;x™™ and (1 — 8,) &, by
(1 =8, %:+ {1 —a;) k™ The numerical diffusion k™™
depends upon the relative importance of the upwinding; for
the classical upwind differencing, the numerical diffusion is
for example given by "™ = u, Ax,/2. For the purpose of a
clear presentation we will thus concentrate on the centered
version.

Using the Von Neumann method for stability analysis
with the definitions

i; At
2=55, (3)

At
C,-EL, d; =
Ax;

y=pexp (IZ nk; Ax,-)

=pexp (IZn,-G,-); I'=—1, (4)
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we can easily compute the complex amplification factor p,

_X+1IY
=y

X=1-% (1-$)d,(1—cos0)

i

Y=—|:Z(l—oc,-)c,-sin 9,i| (5)

i

U=1+5% B.d;(1—cos8)

V=Y o;c,siné,.

At this stage, by looking at a numerical mode in one direc-
tion, it is easy to show that an absolute necessary stability
condition is ;= 0. This reflects only the fact the forward
integration of a problem with negative diffusion or back-
ward integration of a system with positive diffusion is not a
well-posed mathematical problem. We thus suppose d; = 0,
leading immediately to U2+ V2> 1.
The definition of

(B)=U—X2+ V-V’ (6)

allows us then to write the strong Von Neumann stability
condition as follows (because U2+ V7 #0):

lpl €120 (7)

This condition will now be translated into conditions on the
discretization constants of (3).

Unfortunately, we are not able to find a general necessary
and sufficient stability condition. Indeed, in Section 2 we
will find two necessary stability conditions in the general
case. Then, in Section 3 we will show that these stability
conditions are sufficient if o;=2 and f,= . In the case
where the implicit factors vary coordinate-wise, we are able
to derive sufficient stability conditions that differ from the
necessary stability conditions found in Section 2. Tt will then
be shown that the necessary and sufficient stability condi-
tions lead to the strange possibility of destabilizing an
implicit scheme by increasing one implicit factor in one
direction.

2. NECESSARY LOCAL STABILITY CONDITIONS

A simple method to find necessary stability conditions is
to verify the behavior of the scheme for long and short
waves. Indeed, if we look at the behavior of short waves (the
numerical mode) in direction /, we have 8, = r. By using all
combinations of very long waves and short waves, it is easy
to establish that there exists a necessary stability condition
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only due to the diffusion part of the equation. This condi-
tion can be proved to be

> max(0, (1-28)d)<1;  d;20. (8)

For long waves in every direction 8;,=10, Vi, we are at the
stability limit because

e=0. (9)

Furthermore, for these long waves?

dg

a6, " (10)
8% Cardd | Il)
68,-63,._ [did;— (1 —a,— ;) c;c;]. (

In order to guarantee that ¢ 2 0, it is thus necessary that the
matrix representing the tensor H,

H=Z Zeiej[diafj_(] —a;— o} e, (12}
i J

is positive definite.” This condition is thus another necessary
stability condition. :

3. NECESSARY AND SUFFICIENT CONDITIONS

Suppose for now that the same implicit factor is used in
each direction: o;=«, f,=5. The tensor H can then be
written as*

H=B-H'-B,

H =I—-(1-2a}ss, (13)

5 e =— e, B-e,=5,./d,. (14)

\/Ej!

and we suppose that o, > 0; otherwise, only the necessary
condition « > { remains. In the case d,>0 the quadratic
form associated with the tensor H and a vector 2" is

2 -H.2=z H .z=2z.7— (1 -20)(z-s)’, i=B.7'
(15)
and it is positive Vz if and only if
I—(1—-2a)s-5s>0. (16}

? 5, 1s the classical Kronecker symbol: d;=0,i#fdy=1,i= L

% ¢, is the unit vector in direction i, and e;e; is the dyadic vector product
of vectors e; and e;.

41 is the identity tensor.
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We can now rewrite necessary stability conditions (8) and
(16):

o2
_ ;gl,
(1 2&)2 p

{17)

1-20)Yd<l, d3=0, (18)

Luckily enough, conditions (17) and (18) are also sufficient
conditions! To demonstrate this conjecture, we use Eq. (6):

=(U+ XHU-X}+(V+ YNV —T)
= [2—(] —28) Y d;(1 —cos 0,)][2 d,(1 —cos 9,-)]

(19)

2
—(1—=2a) (Z ¢, sin 9,-) .
» Fora 23, we have thus

ez Z{2—

1-2527; Z=% d.(1—cos ) (20

The definition of Z and the necessary stability condi-
tion (18) aliow us to affirm that

Z=0;

(1-2/Z2<2 (21)

and thus ¢ ;= 0, which assures stability, as we may expect for
a more than semi-implicit scheme like the Crank—Nicolson
scheme.

» If o<1, Schwartz inequaliy and necessary condi-
tion (17) imply:

2
(1 2) (Z ¢, sin G,-) (1—2a) (z

1

‘ \/E sin 8)
j (; d, sin’ 9,-)

AL

<(1-24) (z

<Y d;sin’ 6,

au|"5
R

i

s4Z d; sinzj-—42d,- sin? 3'
(22)

Using this last inequality we have
o A
£24Y d;sin 5—4(1r2ﬁ) Y d;sin 7 (23)

For =1, we see immediately that ¢=0 and that the
scheme is thus stable.
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If B < 1, Schwartz inequality and necessary condition (18)
lead to

(1-2;3)(3{ sin ﬂ) <{1~2{5)(Z\/_\/Esm )

<(1-28) ( )(zi:d,.sin“%)
s(z d; sin“%i).

This demonstrates that ¢ = (¢ if conditions (17) and (18) are
satisfied.

Stability conditions (17) and {18) are thus necessary and
sufficient stability conditions for the scheme (2) when 2, =«
and 8,= f. Our stability conditions are then a generaliza-
tion of the well-known 1D conditions and the recently
discovered conditions in 2D [2].

We found thus a necessary and sufficient stability condi-
tion in a case where Van Leer {3] thought it impossible.
Furthermore, we correct a well-known error of Roache [4]
and Fromm [5]. They postulate the existence of a stability
condition based on the cell Reynolds number:

(24)

A
X <o, (25)
K

which in fact is neither a sufficient nor a necessary condition.
Several authors (e.g., Leonard [6], Thompson et al. [7])
mention this error that is shown here to persist in N
dimensions.

[t is worth noting that the stability conditions have been
obtained easily by a local analysis. Only afterwards did we
prove that they are sufficient conditions as well.

4, DESTABILIZING IMPLICITNESS

Let us finally come back to the general discretization of
Eq. (2). We showed already that, not very surprisingly, a
more than semi-implicit scheme is unconditionally stable if
the same implicit factor is used in each direction. In practice,
once one decides to pay the price {in terms of computational
requirements) {or an implicit scheme in more than one
direction, one would, of course, intuitively tend to this
solution, but there could be reasons to use different implicit
factors in each direction. If, for reasons of accuracy, for
example, one would limit the implicitness differently
according to the direction,’ scheme (2) could be applied It
is then tempting to suppose that the conditionsa, 2 1, §, 2 1
assure stability. We will show that they will not guarantee

S In this case, the implicit factors would probabily be chosen by some
functional dependencies on discretization constants like o; =0y, ),

Bi=Bilde, ex)
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stability; even worse, there could be situations where an
increase of implicitness could destabilize the scheme.

This can be proved by the following analysis. Let again
write

e=s(U+XNU-X)+{(VF+Y)V-YT)

{ 2(1—2,8 (1 —cos@,) }{Zdj(l—cosﬁ'j)}
+ {Z ¢, sin 9,}{2 (20;,— 1) ¢;sin 91}

Hz Z {28, d,(1—cos 8))

- (l —28,)dd;{1 —cos 8,)(1 —cos 6))
+ ¢;c;(20;— 1) sin 0, sin 8, }. (26)

Using the following decomposition,®

2d,6,(1 —cos §,) = /d; /d;8,;{sin 0;sin §,
+ (1 —cos 8,)(1 —cos 8,)}, (27)
we can write {26) as a sum of two quadratic forms:
S:Sl +EZ= (28)
Fl:p'H"ps (29)
e;=q-D-gq (30)

where H' is the tensor used in Eq. (1
veclors and tensors are defined by

3), while the other

p-e;=./dsin0, (1)
q-¢,=./d;(1—cos 8,), {32)
e, D-e,=8,—/d Jd(1 (33)

A sufficient stability condition is thus that the matrixes
representing the tensors H' and D arc positive definite,
These are only sufficient conditions because it is not
necessary that ¢, 20 and ¢, 0. Furthermore, for &, to be
positive, the matrix representing the tensor D does not need
to be positive definite, because the vectors q are not
arbitrary, as they have only positive components.

The conditions on H’ and D are thus only sufficient con-
ditions. Interestingly enough, the condition on tensor H' is
a part of the necessary conditions. The difference between
the necessary conditions and the sufficient conditions is thus
linked to the diffusion part through the tensor D. To
illustrate the stability conditions, let us examine a 2D
problem.

* We definetely suppose that d,> 0.
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FIG. 1. The difference between necessary condition (35) and sufficient
condition {38) shown as a function of implicit factors f,, f, for d, = 3,
d, = 4. The narrowly hatched region correspends to condition (35) and is
thus an instability region. The other hatched region corresponds to
condition (38) is thus a stability region provided that (34) is satisfied.
Between the two, nothing can be stated about stability.

In the 2D case, the necessary stability condition
associated with the tensor of Eg. (12) and condition (8)
lead, indeed, to the necessary conditions’

(1—2ocr)rx+(1—2a‘.)r.+(ax—oc,) r.< 1, (34)
max(0, (1 —2§.)d,)+max(0, (1-28,)d,}< 1, (35)
where
c? c?
== =-L, 36

r.\’ dx5 r} d)‘ ( )

On the other hand, the sufficient conditions read
(1 - 20:.’()"..\' + (1 - 2“}')"‘)' + (a.\: - a}')z rxry = le (37)
(1-28)d . +(1-2B)d, +(B.—B,) d.d, <1 (38)

It is readily verified that if (38) is satisfied then (35) is also
satisfied. The difference between the two conditions is
depicted on Fig. 1 for d, =2, d,=4. Provided that (34) is
satisfied, satisfying (38) assures stability, whereas violating
(35) leads to instability. Between the two conditions,
nothing can be said in general, but in practice, a fine-scale
parametric scanning of the amplification factor allows us to
compute the real stability limit. On Fig. 2, we show the com-
putation of these limits for the same numerical values used
in the other examples with «, = 1, &, = 0.8 (which assures us

"The condition on tensor H of Eq. (12) provides also the necessary
conditions (! —2a,)r, <1 and (1 —2a,)r, <1, but it is easily shown that
they are less constraining than (34).
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FIG 2. Numerical computation of the stability condition as a function
of B, B .lord, =3, d, =4

that (34) is satisfied). It turns out that the curve found
numerically is very close to the necessary stability condition.

But suppose now that we even satisfy sufficient condi-
tion (38). We are thus sure that condition (34) is the separa-
tion between a stable and an unstable scheme because when
it is not satisfied, a necessary condition is not satisfied
(instability), whereas if condition (34) is satisfied, ail the
sufficient conditions are satisfied (stability). We can then see
a strange behavior: in the («, a,) plane, the stability limit
(34) describes a parabola (shown on Fig. 3 for r. =%,
r,=%). If we increase one implicit factor in one direction,
but fix the second one, the scheme may become unstable
although it was stable for smaller implicitness. It can even be
unstable for o, = 4! :

Increasing the implicit factor in only one direction may thus
change a stable scheme into an unstable one. This unexpected

\

-t
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X

FIG. 3. The stability domain (white) given by (34) as a function of
implicit factors a, «, for r, =4, 7, =% The horizontal and vertical lines
correspond to the necessary 1D stability conditions.
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behavior stems from the special form of the amplification
factor. Indeed, if the implicit factors are not identical, their
influence on the numerator and denominator of (5) are not
as straightforward as in the case where they are identical.

A similar necessary stability condition can be written for
the 3D scheme and the condition on the tensor H is

(1 _2D£.'()r.\'+ (1 - zay)r_v + (1 —ZC(:))’:
+ (ax - a"')l L + (ax - a:)z r.\:r:

+ (a:—oc_‘,)z ror.< L (3%)
This condition aliows also for a destabilizing effect of the
implicitness.

Even more, for f =#,, conditions (35} and (38} are
identical, and in N dimensions, if 8, = ;, then condition (8)
and the condition on tensor H' are necessary and sufficient
conditions; our result on the destabilizing implicitness is
thus also demonstrated in this case.

5. DISCUSSION

By analyzing the stability of a classical one-time-step
discretization of an N-dimensional advection—diffusion
equation, we were able to find necessary and sufficient
stability conditions when the same implicit factors are used
in each direction. When different implicit factors are used in
each direction, the local analysis provides generally only
necessary stability conditions, which show, however, that
the scheme can become unstable when only one implicit
factor is increased.

Whether or not our result is peculiar to the scheme
analyzed here, 1s not clear. In our opinion, similar strange
behaviors may be found in other schemes that favor the
treatment in one direction compared to the others. Qur
study suggests, then, a more careful lock at the behavior of
such schemes.

The Von Neumann stability analysis does, of course, not
take into account the boundary conditions and finite
domains. From this point of view, the stability of the scheme
can be modified by the type and peculiar implementation of
the boundary conditions. This is, however, a general remark
on stability conditions and is not characteristic of the
scheme analyzed here. The observation of the strange
behavior, when increasing one implicit factor, is thus not
necessarily observable in practice, because instabilities due
to boundary conditions could hide this effect or the
boundary conditions could stabilize the scheme.
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